The Department follows the syllabus and adheres to the curriculum structure as mandated by the affiliating Assam University.

During the three years of the B.Sc Physics Honours programme, spread over 6 semesters, 20 theory papers and 14 practical papers are taught. The Semester wise distribution of the Papers and their Course Outcomes are as follows:-

Semester I	
Name of the paper:	On completion of this course the students will learn, have a fair
MATHEMATICAL DUVSICS I	CO1: Matrices
FEISICS-I	CO2: First and Second Order Differential Equations
Paper Code: PHSHCC101T	CO3: Scalar and Vector product of vectors, Scalar and Vector Triple
	Product
	CO4: Vector Differentiation
	CO5: Vector Integration
	CO6: Orthogonal Curvilinear Coordinates
	CO7: Introductory Numerical Techniques
	CO8: Probability and Theory of Errors
Name of the paper:	Once this course is completed the students will be able to use
MATHEMATICAL	C/C + /EODTDANI/
PHYSICS-I Practical	C/C++/IORIRAN/ Schab
Paper Code	Python/Matlab/Mathematica/others to solve the following
PHSHCC101P	problems:
moneeron	CO1: To Find the area of circle, area of square, volume of sphere
	CO2: To find sum & average of a list of numbers, find the largest of a
	given list of numbers and its location in the list, sort a list of numbers in
	ascending or descending order, find maximum, minimum and range of
	numbers, find values of sine, cosine and exponential function using their
	series expansion up to definite number of terms.
	CO3: To generate a list of random integers, find value of pi by random
	numbers, find factorial of a number and generate Fibonacci series.
	CO4: To solve algebraic equations i. by Bisection method ii. by
	Newton-Raphson method iii. by Secant method and to solve
	transcendental equations by suitable approximate numerical method.
	CO5: To evaluate trigonometric functions i sind ii $cos d$ iii $tand$ using
	Newton Gregory Forward and Backward difference formula
Name of the paper:	On completion of this course the students will learn, have a fair
MECHANICS	understanding of and develop the concepts of:
	CO1. Fundamentals of dynamics

Paper Code:	CO2: Work and Energy
PHSHCC102T	CO3: Collisions
	CO4: Rotational Dynamics
	CO5: Gravitational and Central Force Motion
	COO: Oscillations
Name of the paper:	At the end of this course the students will be able to:
MECHANICS	At the end of this course the students will be able to: CO1: Measure the diameter of a thick wire using vernier caliber screw
PRACTICAL	gauge and travelling microscope and hence find its cross-section
Paper Code: PHSHCC102P	CO2: Determine the Moment of Inertia of unknown body by suitable method
	CO3: Determine Coefficient of Viscosity of water by suitable method
	CO4: Determine the Young's Modulus of a Wire by suitable method.
	CO5: Determine the Modulus of Rigidity of a Wire by suitable method.
	CO6: Determine the value of g using Bar Pendulum
	CO7: Determine the value of g using Kater's Pendulum.
	CO8: Study the Motion of Spring and calculate (a) Spring constant, (b) g
	SEMESTER II
Name of the paper:	On completion of this course the students will be able to learn.
ELECTRICITY AND	understand and develop the concepts of:
MAGNETISM	CO1: Electric field and electric potential
	CO2: Dielectric properties of matter
Paper Code:	CO3: Magnetic field
PHSHCC201T	CO4: Magnetic properties of matter
	CO5: Electromagnetic induction
	CO6: Electrical circuits
	CO7: Network Theorems
	CO8: Ballistic galvanometer
Name of the paper:	At the end of this course the students will be able to:
ELECTRICITY AND	CO1: Study the characteristics of a series RC Circuit connected to an ac/dc
MAGNETISM	source.
PRACTICAL	CO2: Determine an unknown Low Resistance using Potentiometer.
	CO3: Determine an unknown Low Resistance using Carey Foster's Bridge.
Paper Code:	CO5: Determine the strength of the magnetic field produced at the centre of
PHSHCC201P	the tangent galvanometer coil due to a current flowing in it and hence to
	determine horizontal component of earth's magnetic field.
	CO6: Verify the Thevenin's theorem.

	CO7: Verify the Norton's theorem. CO8: Verify the Maximum power transfer theorem
	CO9: Determine self-inductance of a coil by Anderson's bridge/Maxwell's
	bridge. CO10: Study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q and (d) Band width. CO11: Determine the resistance of a given galvanometer by half deflection method. CO12: Determine the mutual inductance between two coils by suitable method.
Name of the paper:	Once this course is completed, the students will learn, have a fair
WAVES and OPTICS	understanding of and develop the concepts of:
	CO1: Superposition of collinear harmonic oscillations
Paper Code: PHSHCC202T	CO2: Superposition of two perpendicular harmonic oscillations
	CO3: Wave Motion
	CO5: Superposition of two harmonic waves
	CO6: Electromagnetic nature of light
	Co7: Interference
	CO8: Diffraction
	CO9: Holography
Name of the paper:	At the end of this course the students will be able to:
WAVES and OPTICS	CO1: Determine the frequency of an electric tuning fork by Melde's
PRACTICAL	experiment and verify λ^2 –T law.
Damar Cada	CO2: Determine refractive index of the material of a prism using sodium
Puper L Avie	
Paper Code: PHSHCC202P	CO3: Determine the dispersive power and Cauchy constants of the
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism.
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of
PHSHCC202P	CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source.
PHSHCC202P	 CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg
PHSHCC202P	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
PHSHCC202P	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating
PHSHCC202P	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating.
PHSHCC202P	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating. Semester III
PAper Code: PHSHCC202P	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating. At the end of this course the students will be able to learn, understand
Name of the paper: MATHEMATICAL	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating. Semester III At the end of this course the students will be able to learn, understand and develop the concepts of: CO1: Fourier Series
Paper Code: PHSHCC202P Name of the paper: MATHEMATICAL PHYSICS-II	Source. CO3:Determine the dispersive power and Cauchy constants of the material of a prism using mercury source. CO4: Determine the wavelength of sodium source using Michelson's interferometer CO5: Determine wavelength of sodium light using Fresnel Biprism. CO6: Determine wavelength of sodium light using Newton's Rings. CO7: Draw the D- λ calibration curve and hence find the wavelength of unknown source. CO8: Determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. CO9: Determine dispersive power and resolving power of a plane diffraction grating. Semester III At the end of this course the students will be able to learn, understand and develop the concepts of: CO1: Fourier Series CO2: Erobenius Method, and its applications to find the solution of

PHSHCC301T	 CO3: Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality CO4: Beta and Gamma Functions and Relation between them CO5: Dirac Delta function and its properties CO6: Partial Differential Equations
Name of the paper: MATHEMATICAL PHYSICS-II Practical Paper Code: PHSHCC301P	Once this course is completed, the students will be able to use C/C++/FORTRAN/ Scilab/ Python/Matlab/Mathematica/others to solve the following problems: CO1: To calculate velocity and acceleration from the given position
	with equidistant time data using forward difference formula. CO2: To evaluate integral of a function over an interval using
	Trapezoidal rule. CO3: To evaluate integral of a function over an interval using Simpson's 1/3 rule
	CO4: To find the area of B-H Hysteresis loop using suitable numerical method.
	CO5: To add, multiply two matrices and find transpose of a given matrix.
	CO6: To find inverse, eigen values and eigen vectors of a given matrix
	CO7: To find the value of R from a given current(I) with voltage(V) data using least square fitting, assuming that the Ohm's law is obeyed.
	CO8: To measure spring constant using Hook's law (neglecting negative sign) from a given displacement(x) with applied force(F) data using least square fitting.
	CO9: To solve mesh equations of electric circuits (3 meshes) by Gauss elimination method.
	CO10: To solve coupled spring mass system(3 masses) by suitable method.
	CO11: Using Rodrigues' formula as a user-defined function, evaluate and plot the first six Legendre polynomials from x=-1 to +1.
	CO12: Using the appropriate Frobenius series as a user-defined

	function, evaluate and plot the first six Bessel functions of
	the first kind from $x=-1$ to $+1$
Name of the paper:	At the end of this course the students will be able to learn, understand
THERMAL PHYSICS	and develop the concepts of:
	CO1: Zeroth and First Law of Thermodynamics
Paper Code:	CO2: Second Law of Thermodynamics
PHSHCC3021	CO3: Entropy
	CO4: Thermodynamic Potentials
	CO5: Maxwell's Thermodynamic Relations
	CO6: Phase Transition
	CO7: Distribution of Velocities
	CO8: Molecular Collisions
	CO9: Real Gases
Name of the paper:	At the end of this course the students will be able to:
THERMAL PHYSICS	CO1: Determine Mechanical Equivalent of Heat I by Ioule's / Callender
	and Barne's constant flow method
FRACTICAL	CO^2 : Determine the Coefficient of Thermal Conductivity of Cu by
Paper Code:	Searle's Apparatus or any suitable method
PHSHCC302P	CO3: Determine the coefficient of linear expansion, by optical lever
	method or any other suitable method
	CO4: Determine the Coefficient of Thermal Conductivity of a bad
	conductor by Lee and Charlton's disc method or any suitable method
	CO5: Determine the Temperature Coefficient of Pesistance by Platinum
	Posistance Thermometer (DPT)
	CO6: Study the variation of registence with temperature by Carry Fester
	bridge and hance determine the temperature coefficient of the meterial
	using botplate, CO7: Study the variation of Thermo amf of a
	Thermocouple with Difference of Temperature of its Two Junctions
	COS: Calibrate a thermocouple to measure temperature in a specified
	Panga using Null Method, ii) Direct measurement using On Amp
	difference amplifier and to determine Neutral Temperature
	COOL Determine the specific heat of a liquid by the method of cooling
	CO9. Determine the specific heat of a fiquid by the method of cooling.
Name of the paper:	Once this course is completed, the students will learn have a fair
DICITAL EXETENC	Understanding of and develop the songents of:
DIGITAL SYSTEMS	CO1. Cothe de Dere Oreille exerce
AND APPLICATIONS	CO1: Cathode Ray Oscilloscope
Papar Coda:	CO2: Integrated Circuits
PHSHCC303T	CO3: Digital Circuits
THSHCC5051	CO4: Boolean Algebra
	CO5: Data processing circuits
	CO6: Arithmetic Circuits
	CO7: Sequential Circuits
	CO8: Shift registers
	CO9: Counters (4 bits)
	CO10: Computer Organization
	CO11: Intel 8085 Microprocessor Architecture

	CO12: Introduction to Assembly Language
	CO13: Timers
Name of the paper:	At the end of this course the students will be able to:
DIGITAL SYSTEMS	CO1: Verify the truth tables of AND, OR, NOT, NOR and NAND gates.
AND APPLICATIONS	CO2: Design a combinational logic system for a specified Truth Table.
PRACTICAL	CO3: Convert a Boolean expression into logic circuit and design it using
	logic gate ICs
Paper Code:	CO4: Design and verify the De Morgan's theorem using breadboard.
PHSHCC303P	CO5: Design and verify Half Adder and Full Adder.
	CO6: Build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using
	NAND gates. CO7: Build IK Master slave flip flop using Elip Elop ICs
	CO8. Build a 4 bit Counter using D type/IK Elip Elop ICs and study
	timing diagram
	CO9: Design an astable multivibrator of given specifications using 555
	Timer.
	CO10: Design a monostable multivibrator of given specifications using
	555 Timer.
	CO11: Measure (a) Voltage, (b) rise and fall times and (c) Time period of
	a periodic waveform using CRO.
	CO12: Write the following programs using 8085 Microprocessor
	a. Addition and subtraction of numbers using direct
	addressing mode
	b. Addition and subtraction of numbers using indirect
	addressing mode
	c. Multiplication by repeated addition.
	d Use of CALL and RETURN Instruction
No	
Name of the paper:	Once this course is complete, the students will be able to learn,
WORKSHOP SKILL	understand and develop the concepts of:
Paper Code:	CO1: Introduction to Workshon Skill
PHSSEC301T	CO2: Mechanical Skill
	CO3: Machine processing
	CO4: Electrical and Electronic Skill
	CO5: Introduction to prime movers
	Semester IV
Name of the paper:	On completion of this course, the students will learn, understand and
MATHEMATICAL	develop the concepts of:
PHYSICS-III	CO1: Complex Analysis
Paper Code:	CO2: Taylor's and Laurent's series
PHSHCC401T	CO3: The Calculus of Residues
	CO5: Lucran LT and Application of LT
	COS: Inverse L1 and Application of L1

Name of the paper:	Once this course is completed, the students will be able to use
MATHEMATICAL	C/C++/FORTRAN/ Scilab/
PHYSICS-III	Puthon / Matlah / Mathematica / others to solve the following
PRACTICAL	nrohleme:
Paper Code:	problems:
PHSHCC401P	CO1: Solve a given first order ordinary differential equation (ODE) like
	(a) Radioactive decay(b) Newton's law of cooling (c) Current in LR, RC
	circuit with DC source using Euler/RK 4Order method.
	CO2: Solve a given second order ordinary differential equation (ODE) like (a) free harmonic oscillator (b) Damped harmonic oscillator (c) forced harmonic oscillator using RK 4 order method.
	CO3: Solve (a) Wave equation (b) Heat equation (c) Poisson Equation (d) Laplace equation.
	CO4: Solve differential equations CO5: Dirac Delta Function: CO6: Fourier Series: CO7: Frobenius method and special functions: CO8: Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two) CO9: Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program. CO10: Evaluation of trigonometric functions e.g. $sin\theta$, CO11: Complex analysis CO12: Solve Kirchhoff's Current law for any node of an arbitrary circuit using Laplace's transform. CO13: Solve Kirchhoff's Voltage law for any loop of an arbitrary circuit using Laplace's transform.
Name of the paper:	At the end of this course, the students will learn, understand and
ELEMENTS OF	develop the concepts of:
MODERN PHYSICS	CO2: Quantum Theory of Light
Paper Code:	CO3: Heisenberg's Uncertainty Principle
PHSHCC402T	CO4: Fundamental postulates of Ouantum Mechanics
	CO5: Hamiltonian Operator, time dependent Schrodinger equation and
	Dynamical evolution of a quantum state
	CO6: Radioactivity
Name of the paper:	CU/: Lasers
FLEMENTS OF	At the end of this course the students will be able to. CO1: Measure Planck's constant using black body radiation and photo-
MODERN PHYSICS	detector.
PRACTICAL	CO2: Photo-electric effect: photo current versus intensity and wavelength
	of light; maximum energy of photo-electrons versus frequency of light.

Paper Code: PHSHCC402P	 CO3: Determine work function of material of filament of directly heated vacuum diode. CO4: Determine the Planck's constant using LEDs of at least 4 different colours. CO5: Determine the wavelength of H-alpha emission line of Hydrogen atom. CO6: Determine the value of e/m by Magnetic focusing/ Bar magnet or by any suitable method. CO7:Set up the Millikan oil drop apparatus and determine the charge of an electron. CO8: Show the tunneling effect in tunnel diode using I-V characteristics. CO9: Determine the wavelength of laser source using diffraction of single slit. CO1: Determine the wavelength of laser source using diffraction of double slits.
Name of the paper: ANALOG SYSTEMS	On completion of this course the students will be able to learn, understand and develop the concepts of:
AND APPLICATIONS	CO1: Semiconductor Diodes CO2: Rectifier Diode
Paper Code: PHSHCC403T	CO3: Two-terminal Devices and their Applications
	CO4: Bipolar Junction transistors CO5: Amplifiers, Coupled Amplifier, Feedback in Amplifiers
	CO6: Sinusoidal Oscillators
	Amps
Name of the paper:	At the end of this course the students will be able to: CO1: Study V-I characteristics of PN junction diode, and Light emitting
AND APPLICATIONS	diode.
PRACTICAL	CO2: Study the V-I characteristics of a Zener diode and its use as voltage regulator.
Paper Code:	CO3: Study of V-I & power curves of solar cells, and find maximum power
rnshee403r	CO4: Study the characteristics of a Bipolar Junction Transistor in CE
	CONfiguration. CO5: Design a CE transistor amplifier of a given gain (mid-gain) using
	voltage divider bias. CO6: Study the frequency response of voltage gain of a single stage RC-
	CO7: Design a phase shift oscillator of given specifications using BJT.
	CO8: Design a Wien bridge oscillator for given frequency using an op-amp. $CO9$: Study the analog to digital convertor (ADC) IC
	CO10: Design an inverting amplifier using Op-amp (741,351) for dc input
	voltage and study its closed loop gain. CO11: Design inverting amplifier using Op-amp (741,351) and study its

	frequency response. CO12: Design non-inverting amplifier using Op-amp (741,351) & study its frequency response. CO13: Investigate the use of an op-amp (741,351) as an Integrator and Differentiator. CO14:Add two dc voltages using Op-amp (741,351) in inverting and non- inverting mode. CO15: Investigate the use of an op-amp (741,351) as adder and subtractor.	
Name of the paper:	Once this course is complete, the students will be able to learn,	
ELECTRICAL	understand and develop the concepts of:	
CIRCUITS AND	CO1: Basic Electricity Principles	
NETWORK	CO2: Understanding Electrical Circuits	
Paper Code:	CO3: Electrical Drawing and Symbols	
PHSSEC401T	CO4: Generators and Transformer	
	CO5: Electric Motors	
	CO7: Electrical protection	
	CO8: Electrical Wiring	
Semester V		
Name of the paper:	Once this course is completed, the students will be able to learn,	
QUANTUM	understand and develop the concepts of:	
MECHANICS AND	CO1: General formalism of quantum mechanics	
APPLICATIONS Paper	CO2: Quantum mechanical Operators	
Code: PHSHCC501T	CO3: Applications of Schrödinger equation	
	CO5: Atoms in External Magnetic Field	
Name of the paper:	At the end of this course, the students will be able to	
QUANTUM	CO1: Study Electron spin resonance- determine magnetic field as a	
APPLICATIONS	function of the resonance frequency.	
PRACTICAL Paper	CO2: Study Zeeman effect: with external magnetic field; Hyperfine	
Code: PHSHCC501P	splitting.	
	CO3: Show the tunneling effect in tunnel diode using I-V	
	characteristics.	
	Quantum efficiency of CCDs.	
	In addition to that, the students will be able to use	
	C/C++/FORTRAN/ Scilab/	
	Python/Matlab/Mathematica/others to solve the following problems:	
	CO1: Solve the s-wave Schrodinger equation for the ground state and	

	the first excited state of the hydrogen atom
	CO2: Solve the s-wave radial Schrodinger equation for an atom
	CO3: Solve the s-wave radial Schrodinger equation for a particle
	CO4: Solve the s-wave radial Schrodinger equation for the vibrations of
	hydrogen molecule
Name of the paper: SOLID STATE PHYSICS Paper Code: PHSHCC502T	Once this course is completed, the students will be able to learn, understand and develop the concepts of: CO1: Crystal Structure CO2: Elementary Lattice Dynamics CO3: Magnetic Properties of Matter CO4: Dielectric Properties of Materials CO5: Ferroelectric Properties of Materials CO6: Elementary Band Theory
	CO7: Superconductivity
Name of the paper: SOLID STATE PHYSICS PRACTICAL Paper Code: PHSHCC502P	At the end of this course, the students will be able to CO1: Measure susceptibility of paramagnetic solution by (Quinck's Tube Method)/suitable method. CO2: Measure the Magnetic susceptibility of Solids. CO3: Measure the Dielectric Constant of a dielectric Material by suitable method. CO4: Study the PE Hysteresis loop of a Ferroelectric Crystal. CO5: Draw the BH curve of Fe using Solenoid/transformer & determine energy loss from Hysteresis. CO6: Measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap. CO7: Determine the Hall coefficient of a semiconductor sample.
Name of the paper: CLASSICAL DYNAMICS	Once this course is completed, the students will be able to learn, understand and develop the concepts of:

Paper Code:	CO1: Dynamics of a system of particles
PHSDSE501TA	CO2: Lagrangian formalism
	CO3: Hamiltonian Formalism
	CO4: Small Amplitude Oscillations
	CO5: Fluid Dynamics
Name of the paper: NUCLEAR AND PARTICLE PHYSICS	On completion of this course, the students will be able to learn, understand and develop the concepts of:
Paper Code:	CO1: General Properties of Nuclei
PHSDSE502TA	CO2: Nuclear Models
	CO3: Radioactive decay
	CO4: Nuclear Reactions
	CO5: Interaction of Nuclear Radiation with matter
	CO6: Detector for Nuclear Radiations
	CO7: Particle Accelerators
	CO8: Particle physics
	Semester VI
Name of the paper:	On completion of this course, the students will be able to learn,
ELECTROMAGNETIC	understand and develop the concepts of:
I HEOK I	CO1: Maxwell Equations
Paper Code: PHSHCC601T	CO2: EM Wave Propagation in Unbounded Media
	CO3: EM Wave in Bounded Media
	CO4: Polarization of Electromagnetic Waves
	CO5: Wave Guides
	CO6: Optical Fibres
Name of the paper:	At the end of this course, the students will be able to
ELECTROMAGNETIC THEORY	CO1: Verify the law of Malus for plane polarized light.
PRACTICAL	CO2: Determine the specific rotation of sugar solution using
Paper Code:	Polarimeter.
PHSHCC601P	CO3: Analyze elliptically polarized Light by suitable method (using a

	Babinet's compensator).
	CO4: Study the polarization of light by reflection and determine the polarizing angle and hence determine the refractive index of the material.
	CO5: Verify the Stefan's law of radiation and to determine Stefan's constant.
	CO6: Determine the Boltzmann constant using V-I characteristics of PN junction Diode.
Name of the paper: STATISTICAL MECHANICS	Once this course is complete, the students will be able to learn, understand and develop the concepts of:
Paper Code:	CO2: Classical Theory of Radiatio
THSHCC0021	CO3: Quantum Theory of Radiation
	CO4: Bose-Einstein Statistics
	CO5: Fermi-Dirac Statistics
Name of the paper: STATISTICAL MECHANICS	When this course is over, the students will be able to use C/C++/FORTRAN/Scilab/Python/Matlab/Mathematica/others to solve the following problems:
Paper Code: PHSHCC602T	CO1: Compute the partition function $Z(\beta)$ for examples of systems with a finite number of single particle levels (e.g., 2 level, 3 level, etc.) and a finite number of non-interacting particles N under Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics
	CO2: Plot Planck's law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature.
	CO3: Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature and low temperature and compare them for these two cases.
	CO4: Plot the following functions with energy at different temperatures a. Maxwell-Boltzmann distribution b. Fermi-Dirac distribution c. Bose- Einstein distribution
	On completion of this course the students will learn, have a fair

	understanding of and develop the concepts of:
	CO1: Basic concepts of positional astronomy
	CO2: Astronomical techniques
	CO3: The sun, the solar family, stellar spectra and classification structure
	CO4: The milky way
	CO5: Large scale structure & expanding universe
Name of the paper: NANOMATERIALS	On completion of this course the students will learn, have a fair understanding of and develop the concepts of:
AND APPLICATIONS	CO1: Nanoscale systems
Paper Code: PHSDSE601TB	CO2: Synthesis of nanostructure materials
	CO3: Optical Microscopy. Scanning ElectronMicroscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy.
	CO4: Electron transport
	CO5: Optical properties
	CO6: Applications of nanoparticles
Name of the paper: DISSERTATION Paper Code: PHSDSE602TA	At the end of this course, the students will be able to carry out a project on topics in/related to any advanced theoretical/ experimental/ computational topics under the supervision of one of the course teachers
Name of the paper: DISSERTATION Paper Code: PHSDSE602TA	Microscopy. CO4: Electron transport CO5: Optical properties CO6: Applications of nanoparticles At the end of this course, the students will be able to carry out a project on topics in/related to any advanced theoretical/ experimenta computational topics under the supervision of one of the course teachers

During the three years of the B.Sc with Physics programme, spread over 6 semesters, 10 theory papers and 4 practical papers are taught. The Semester wise distribution of the Papers and their Course Outcomes are as follows:-

Semester I		
Name of the paper:	On completion of this course the students will learn, have a fair	
MECHANICS	understanding of and develop the concepts of:	
Paper Code: PHSDSC101T/PHSGEC101T	CO1: Vectors	
	CO2: Ordinary Differential Equations	
	CO3: Momentum and Energy	
	CO4: Rotational Motion	
	CO5: Gravitation	
	CO6: Elasticity	

	CO7: Fluids	
	CO8: Special Theory of Relativity	
Name of the paper:	At the end of this course, the students will be able to	
MECHANICS	CO1: Measure the diameter of a thick wire using Vernier Calliper, screw	
PRACTICAL	gauge and travelling microscope.	
	CO2: Determine the Moment of Inertia of a regular body by torsional	
Paper Code:	pendulum.	
PHSDSC101P/PHSGEC101P	CO3: Determine the Young's Modulus of a Wire by Searle's Method.	
	CO4: Determine the Modulus of Rigidity of a Wire by Statistical	
	method.	
	COS: Determine g by Bar Pendulum.	
	CO0: Determine g by Kater's Pendulum.	
	Timing Technique	
	CO8: Study the Motion of a Spring and calculate (a) Spring Constant (b)	
	Value of \boldsymbol{g} .	
	CO9: Determine the Coefficient of Viscosity of water by Capillary Flow	
	Method (Poiseuille's method).	
Semester II		
Name of the paper:	On completion of this course the students will learn, have a fair	
ELECTRICITY AND	understanding of and develop the concepts of:	
MAGNETISM	CO1: Vector analysis	
	CO2: Electrostatics	
Paper Code:	CO3: Magnetism	
PHSDSC2011/PHSGEC2011	CO4: Electromagnetic Induction	
	CO5: Maxwell's equations and Electromagnetic wave propagation	
Name of the paper:	At the end of this course, the students will be able to	
ELECTYRICITY AND	CO1: Use a Multimeter for measuring (a) Resistances, (b) AC and DC	
MAGNETISM	Voltages, (c) DC Current, and (d) checking electrical fuses.	
PRACTICAL	CO2: Determine the specific resistance by metre bridge.	
	CO3: Determine the strength of the magnetic field produced at the	
Paper Code:	centre of the tangent galvanometer con due to a current nowing in it	
PHSDSC201P/PHSGEC201P	field	
	CO4: Determine the self induction of a coil and its internal resistance	
	in an I -R circuit	
	CO5: Study a series LCR circuit and determine its (a) Resonant	
	Frequency. (b) Quality Factor	
	CO6: Determine the resistance of a galvanometer by half deflection	
	method.	
	CO7: Determine a resistance per unit length of metre bridge wire by	
	Carey Foster's method.	
	CO8: Verify the Thevenin's theorem.	
	CO9: Verify the Norton's theorem.	
	CO10:Verify series and parallel laws of resistance by Post office Box.	
	CO11:Compare the emf of two cells by potentiometer.	

Semester III		
Name of the paper:	Once this course is complete, the students will be able to learn,	
THERMAL PHYSICS	understand and develop the concepts of:	
AND STATISTICAL	CO1 [,] Thermodynamic Description of system	
MECHANICS	CO2: Thermodynamic Potentials	
Paper Code:	CO3: Kinetic Theory of Gases	
PHSDSC301T/PHSGEC301T	CO4: Theory of Radiation	
	CO5: Statistical Mechanics	
Name of the paper:	At the end of this course, the students will be able to	
THERMAL PHYSICS	method	
AND STATISTICAL	CO2: Determine the specific heat of a liquid by the method of cooling.	
MECHANICS	CO3: Verify Stefan's law by electrical method.	
PRACTICAL	CO4: Determine the coefficient of thermal conductivity of copper by	
Paper Code:	CO5: Determine the coefficient of linear expansion by suitable	
PHSDSC301P/PHSGEC301P	method.	
	CO6: Determine the temperature co-efficient of resistance by	
	Platinum resistance thermometer.	
	CO7: Study the variation of thermo emf across two junctions of a	
	thermocouple with temperature.	
Name of the paper:	Once this course is complete, the students will be able to learn.	
WORKSHOP SKILL	understand and develop the concepts of:	
Paper Code: PHSSEC301T	CO1: Introduction to Workshop Skill	
	CO2: Mechanical Skill	
	CO3: Machine processing	
	CO4: Electrical and Electronic Skill	
	CO5: Introduction to prime movers	
	Semester IV	
Name of the paper: WAVES	On completing the course, the students will be able to learn,	
AND OPTICS	understand and develop the concepts of:	
Paper Code: PHSDSC401T/PHSGEC401T	CO1: Superposition of Two Collinear Harmonic oscillations	
	CO2: Superposition of Two Perpendicular Harmonic Oscillations	
	CO3: Waves Motion- General	
	CO4: Sound	
	CO5: Wave Optics	
	CO6: Interference	
	CO7: Interferometers	

CO8: Diffraction	
	CO9: Polarization
Name of the paper: WAVES	At the end of this course, the students will be able to
AND OPTICS	CO1: Determine the refrective index of a given liquid by travelling
PRACTICAL	microscope
Paper Code:	CO3: Determine the R. I. of the material of a given lens by suitable
PHSDSC401P/PHSGEC401P	method.
	CO4: Determine the focal length of convex mirror with the help of a
	CO5: Familiarization with Schuster's focussing: determination of
	angle of prism.
	CO6: Determine the Refractive Index of the Material of a given Prism
	using Sodium Light.
	CO7: Determine Dispersive Power of the Material of a given Prism
	using Mercury Light
	CO8: Determine wavelength of sodium light using Newton's Rings.
Name of the paper:	Once this course is complete, the students will be able to learn,
ELECTRICAL CIRCUITS	understand and develop the concepts of:
AND NETWORK	
Dapar Code: DHSSEC401T	CO1: Basic Electricity Principles
raper Code. FHSSEC4011	CO2: Understanding Electrical Circuits
	CO3: Electrical Drawing and Symbols
	CO5: Electric Motors
	CO6: Solid State Devices
	CO7: Electrical protection
	CO8: Electrical Wiring
	Semester V
Name of the paper: BASIC	On completion of the course, the students will be able to learn.
INSTRUMENTATION	understand and develop the concepts of:
Paper Code: PHSSEC501T	
Taper Code. THSSEC5011	CO1: Basic of Measurement
	CO2: Electronic Voltmeter
	CO4· AC millivoltmeter
	CO5: Cathode Ray Oscilloscope
	CO6: Signal Generators and Analysis Instruments
	CO7: Impedance Bridges & Q-Meters
	CO8: Digital Instruments
	CO9: Digital Multimeter
	They will also have hands-on training on
	CO10: Use of an oscilloscope.
	COTT: CKO as a versatile measuring device.

	CO12: Circuit tracing of Laboratory electronic equipment. CO13: Use of Digital multimeter/VTVM for measuring voltages. CO14: Winding a coil / transformer. CO15: Study the layout of receiver circuit. CO16: Balancing of LCR bridges.
CLASSICAL DYNAMICS	Unce this course is completed, the students WIII be able to learn, understand and develop the concepts of:
Paper Code: PHSDSE5011A	CO1: Dynamics of a system of particles
	CO2: Lagrangian formalism
	CO3: Hamiltonian Formalism
	CO4: Small Amplitude Oscillations
	CO5: Fluid Dynamics
	Semester VI
Name of the paper: RENEWABLE ENERGY	Once this course is completed, the students will be able to learn, understand and develop the concepts of:
AND ENERGY HARVESTING	CO1: Fossil fuels and Alternate Sources of energy
Paper Code: PHSSEC601T	CO2: Solar energy
1	CO3: Wind Energy harvesting
	CO4: Ocean Energy
	CO5: Geothermal Energy
	CO6: Hydro Energy
	CO7: Piezoelectric Energy harvesting
	CO8: Electromagnetic Energy Harvesting
Name of the paper: ASTRONOMY AND ASTROPHYSICS Paper Code: PHSDSE601TA	On completion of this course the students will learn, have a fair understanding of and develop the concepts of:
	CO1: Basic concepts of positional astronomy
	CO2: Astronomical techniques
	CO3: The sun, the solar family, stellar spectra and classification structure
	CO4: The milky way

	CO5: Large scale structure & expanding universe
Name of the paper:	On completion of this course the students will learn, have a fair understanding of and develop the concents of
APPLICATIONS	CO1: Nanoscale systems
Paper Code: PHSDSE601TB	CO2: Synthesis of nanostructure materials
	CO3: Optical Microscopy. Scanning ElectronMicroscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy.
	CO4: Electron transport
	CO5: Optical properties
	CO6: Applications of nanoparticles